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NOTEBOOK PAPER

Pyrolysis processing of PFAS-impacted biosolids, a pilot study
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William Prestond, Parik Deshmukhe, Phil Kauppif, and Peter G. Zemekf

aU.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research 
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dConsolidated Safety Services, Durham, North Carolina, USA; eJacobs Technology, Durham, North Carolina, USA; fMontrose Air Quality Services, 
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ABSTRACT
Concentrations of per- and poly-fluoroalkyl substances (PFAS) present in wastewater treatment 
biosolids are a growing concern. Pyrolysis is a thermal treatment technology for biosolids that can 
produce a useful biochar product with reduced levels of PFAS and other contaminants. In 
August 2020, a limited-scope study investigated target PFAS removal of a commercial pyrolysis 
system processing biosolid with the analysis of 41 target PFAS compounds in biosolids and biochar 
performed by two independent laboratories. The concentrations of 21 detected target compounds 
in the input biosolids ranged between approximately 2 µg/kg and 85 µg/kg. No PFAS compounds 
were detected in the biochar. The PFAS concentrations in the biochar were assumed to equal the 
compounds’ minimum detection limits (MDLs). The pyrolysis system’s target PFAS removal effi-
ciencies (REs) were estimated to range between >81.3% and >99.9% (mean >97.4%) with the lowest 
REs being associated with the lowest detected PFAS concentrations and the highest MDLs. No 
information on non-target PFAS compounds in influent or effluent media or products of incomplete 
combustion was considered. Selected gaseous emissions were measured by Fourier transform 
infrared spectroscopy and gas chromatography time-of-flight mass spectrometry to provide addi-
tional information on air emissions after process controls. This limited-scope study indicated that 
additional research to further understand this process is warranted. 

Implications: Development of alternative approaches to manage PFAS-impacted biosolids is of 
emerging international importance. A commercially operating biosolid pyrolysis process was 
shown to lower target PFAS levels in produced biochar. Additional research is warranted to 
understand all potential PFAS transformation emission routes and optimal air pollution emissions 
control strategies for this technology class.
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Introduction

Per- and poly-fluoroalkyl substances (PFAS) are syn-
thetic-fluorinated chemicals employed for decades in 
industrial, consumer products, and firefighting applica-
tions (Buck et al. 2011; Herzke, Olsson, and Posner 2012; 
Houtz et al. 2013; Kotthoff et al. 2015; Lindstrom, Strynar, 
and Libelo 2011; Schaider et al. 2017). The environmental 
fate and potential health impacts of legacy and emerging 
PFAS are the subject of ongoing research, but the need to 
reduce exposure risk for certain PFAS compounds is 
acknowledged (Sunderland et al. 2019). The wide use of 
PFAS, coupled with the chemical persistence of the car-
bon-fluorine bond, has inevitably led to their discovery in 
landfill leachate (Huset et al. 2011; Knutsen et al. 2019; 
Lang et al. 2017) and wastewater treatment plant 
(WWTP) effluent (Loganathan et al. 2007; Schultz et al. 

2006; Sinclair and Kannan 2006), with the potential for 
cyclic exchange between environmental systems noted 
(Hamid and Li, 2016; Masoner et al. 2020; Stoiber, 
Evans, and Naidenko 2020). The concentrations of indi-
vidual PFAS, including perfluorooctanoic acid (PFOA) 
and perfluorooctane sulfonic acid (PFOS), in WWTP 
influent, effluent, and biosolid residuals are variable and 
influenced by point source contributions (Houtz et al. 
2016; MIEGLE 2020; Oliaei et al. 2013; Xiao et al. 2012). 
For a subset of WWTPs, identification and elimination of 
PFAS point sources is critical to management of heavily 
impacted process streams. Due to the ubiquitous nature 
of PFAS, many WWTPs are now considering the conse-
quences of lower level PFAS concentrations in produced 
biosolids and effluent, as science and regulatory frame-
work advance.
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In the US, ~51% of the >2 million dry metric tons (t) of 
stabilized WWTP biosolids are land-applied for beneficial 
use providing soil nutrient and conditioning benefit 
(Mills 2020; USEPA 1999a). With uncertainties in fate 
and transport, elevated levels of PFAS and other contami-
nants in biosolids are increasing concerns over land appli-
cation (Kinney et al. 2006; Maine 2020; MIEGLE 2020; 
Sepulvado et al. 2011; USEPA 2018). Alternate biosolids 
disposal routes in the US currently include landfilling 
(~16%) and sewage sludge incineration (SSI, ~22%) 
(Mills, 2020). Significantly expanded use of these options 
may increase PFAS cyclic exchange and air emissions 
from additional use of SSI and biosolid transportation 
(Miller-Robbie et al. 2015; USEPA 2020). Development 
of new cost-effective biosolid treatment approaches that 
can reduce the environmental impact of PFAS and other 
pollutants while maintaining beneficial use are of growing 
interest.

One biosolids treatment technology is pyrolysis, 
a non-incineration thermal process that decomposes 
materials in an oxygen-free environment at elevated 
temperatures (typically 500°C to 800°C). Compared 
to SSI, pyrolysis features lower production of oxides 
of carbon, nitrogen, and sulfur and reduced release of 
metals, however the potential for PFAS air emissions 
for both processes are uncertain (Kundu et al. 2020; 
Winchell et al. 2021). Pyrolysis units are smaller in 
size and capacity than SSI with partial mass vapor-
ization resulting in comparatively low air flows, 
which reduces the size and capital expense of air 
pollution control equipment. In comparison to strict 
air pollution emission regulations (USEPA 2020) for 
SSI, the regulatory structure for processes, such as 
pyrolysis and gasification, is less defined. Pyrolysis 
produces a hydrogen-rich synthesis gas (syngas) 
stream that can be combusted, with heat energy 
recovered. Whereas SSI produces ash, pyrolysis of 
biosolid yields biochar, a carbon-rich material with 
beneficial use potential ranging from soil enhance-
ment, remediation, and carbon sequestration, to acti-
vated sorbents and specialty catalysts. (Patel et al. 
2020; Paz-Ferreiro et al. 2018; Singh et al. 2020) 
Compared to stabilized biosolids, biochar is patho-
gen-free with lower organic contaminates and metal- 
leaching potential but with lower total nitrogen con-
tent for land application (Hwang, Ouchi, and 
Matsuto 2007; Regkouzas and Diamadopoulos 2019).

There is a dearth of knowledge regarding PFAS mobi-
lization and transformation during thermal biosolid treat-
ment, including elevated temperature drying processes. 
As process temperatures increase, volatile PFAS enter the 
gas phase, becoming part of the syngas stream in the case 
of pyrolysis. Residual or transformed PFAS remaining in 

the solids, gas-phase emissions, and control efficacy 
(C-F bond destruction), products of incomplete combus-
tion (PICs) and liquid-phase partitioning (via emission 
control scrubber water) are wholly unknown at present. 
For pyrolysis-based treatment, the air and water emission 
profiles and the physiochemical properties (and resulting 
uses) of sewage sludge-derived biochar depend on the 
properties of the feed stock and pyrolysis process and 
control system design. Research is now beginning to 
consider these factors in the thermal treatment of bioso-
lids (Kim et al. 2015; Kundu et al. 2020; Winchell et al. 
2021), contaminated soils Sörengård et al. (2020), and 
spent media (Xiao et al., 2020).

This technical note contributes to this topic through 
description of a limited-scope study of a working biosolid 
pyrolysis unit. We measured concentrations of target 
PFAS compounds (SI Table 1) in dried biosolid input to 
a pyrolysis process, produced biochar, and emission con-
trol scrubber water at the Silicon Valley Clean Water 
(SVCW) WWTP in Redwood City, California, over 
a two-day period in August 2020. Since 2017, 
BioForceTech Corporation (BFT, South San Francisco, 
California) (BFT Bioforcetech Corporation Website) 
deployed and operated the system that processes approxi-
mately 30% of the biosolids produced at SVCW. In addi-
tion to solid and liquid sampling, limited measurements 
of light volatile PFAS and other compounds in gaseous 
samples at various parts of the pyrolysis process by extrac-
tive Fourier transform infrared spectroscopy (FTIR) and 
evacuated canister grab sampling will be discussed.

Treatment process

BioDryer, pyrolysis process, and emissions control

The system consisted of three BFT BioDryers followed by 
a P-FIVE sludge pyrolysis system (PYREG GmbH, Dörth, 
Germany) fitted with a FLOX® flameless thermal oxidizer 
(WS Wärmeprozesstechnik GmbH, Renningen, 
Germany). The BioDrying and Pyrolysis system at 
SVCW processes approximately 3,500 t of dewatered 
sludge to 400 t of biochar annually using approximately 
55 kWh/t of biosolids (wet basis) of added energy. 
Traditional biosolid drying processes employ thermal 
energy (e.g., belt, paddle, and drum drying) or solar drying 
over time. The novel BFT BioDryer approach controls 
oxygen (air), heat, and bacteria in a three-phase process 
to take biosolids from 20% dry content to 75%–90% dry 
content in 48 h, while utilizing ~40% of the thermal energy 
and electricity of belt and drum drying. At SVCW, the 
automated process generates ~2 tons of Class A biosolids 
from 8 tons of Class B biosolids (USEPA 1999a) per each 
batch using three BioDryer units. For this study, the 
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BioDryers operated at 60°C to promote thermophilic bac-
terial activity and required 35 kWh of electricity per wet 
ton and 350 kWh (1.2 MMBTU) of thermal energy per wet 
ton to take the dewatered Class B biosolids to <20% moist-
ure Class A biosolids. The exhaust gas from the BioDryers 
could be fed to a wet scrubber (Figure 1) and/or bio-filter. 
Only a bio-filter used for this test.

The dried biosolids were fed into a pyrolysis reactor at 
location D [(LD), Figure 1] at an average rate of 63.6 kg/h 
(±1.4 kg/h standard deviation), producing 28.8 kg/h (± 
0.6 kg/h) of biochar exiting at LE. The biosolids residence 
time in the reactor was 19.1 min (± 0.3 min) and tem-
peratures measured on the inner walls of the reactor at the 
front and end of the system were 649°C (±6°C) and 586°C 
(±32°C), respectively. The pyrolysis of the biosolids pro-
duced syngas containing mainly hydrogen, methane, car-
bon monoxide, and carbon dioxide. No biooil was 
produced by the pyrolysis process. Exiting the reactor, 
the syngas passed through a dust separation cyclone oper-
ating 496°C (±5°C) then was immediately combusted in 
the FLOX® burner operating at 1020°C (±5°C). The hot 
exhaust gases from the combustion of the syngas were 
routed through the annulus of the reactor to drive the 
pyrolysis and then entered a sealed two-stage (fixed tube 
to fin tube) heat exchanger (LB) where they were cooled 
to 60°C. The energy recovered in the heat exchanger was 

conveyed to the BioDryer in the form of hot water to 
support biosolid drying. After heat exchange, the exhaust 
gases passed through a packed-bed caustic wet scrubber 
(LC) operating at a pH of 7.4 (±0.2) and then through an 
activated carbon filter operating at 43.4°C (±3.2°C), exit-
ing via an 8-in. diameter stack at 248 dry scfm (±10 dry 
scfm). The vacuum level of the system was −50.4 Pa 
(±6.4 Pa). The biochar exiting the system at LE is typically 
quenched with tap water prior to agricultural application, 
but quenching was not performed in this project to avoid 
contaminating the biochar with PFAS.

Methods

Solids/Liquids sampling and analysis

Samples of Class A dried biosolids (after the BioDryer), 
pyrolysis-produced biochar, emission control scrubber 
water, and tap water were analyzed to target PFAS by 
two independent laboratories: Eurofins TestAmerica (TA, 
Sacramento, CA), and Vista Analytical (VA, Sacramento 
CA). Clean high-density polyethylene (HDPE) 177 mL 
jars and 125 mL bottles were obtained from the two 
laboratories and were used to collect solid and liquid 
samples from the process, respectively. Additional sam-
ples were simultaneously collected and archived for 

Figure 1. Schematic of pyrolysis unit with air emission and solids/liquids sampling locations: (LA) air sampling at stack, (LB) air 
sampling after clean water (W) heat exchanger, (LC) air and scrubber water sampling, (LD) input biosolids sampling, and (LE) output 
biochar sampling.
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potential follow-on analysis. Two separate sample batches 
(B1 and B2) were acquired on August 26, 2020, at 6:30 
AM and 1:00 PM, respectively. The solid samples were 
collected directly into the containers using clean stainless- 
steel spoons (no homogenization) at LD or LE, and the 
liquid samples were direct grabs into the containers at 
location LC or from the tap water input supply to the wet 
scrubber in one case. There were 24 primary samples 
generated (12 from B1 and 12 from B2). Each sample 
batch consisted of two biosolids, two biochar, and two 
liquid samples for analysis by each lab (e.g., six samples 
for TA and six for VA from sample batch B1). Protocols 
were followed to minimize for PFAS contamination dur-
ing sampling, and the samples were immediately iced and 
transported to the TA and VA laboratories for processing/ 
extraction and analysis using modified EPA Method 537 
(EPA 2009) with isotope dilution, solid-phase extraction, 
and liquid chromatography/tandem mass spectrometry 
(LC-MS-MS) for target 36 and 41 target PFAS com-
pounds by TA and VA, respectively (SI Table 1).

For comparison to other thermal treatment technol-
ogies, the dried biosolids to biochar target PFAS removal 
efficiency (RE) by the pyrolysis system were estimated 
using measured concentrations and the mass rates mov-
ing into and out of the unit (Eq. 1): 

RE¼100�ð1� Cbiochar�Qbiochar= Cbiosolids�Qbiosolidsð �½ Þ (1) 

Where: RE = removal efficiency (percent);
Cbiochar = PFAS concentration in dry biochar;
Qbiochar = dry biochar mass production rate;
Cbiosolids = PFAS concentration in dry biosolids; and
Qbiosolids = dry biosolid mass feed rate.
If all measured Cbiochar were below laboratory report-

ing limits (RLs), the RE was calculated using the method 
detection limit (MDL) for the individual compound and 
expressed as “greater than” the stated value. Since com-
prehensive target and non-target PFAS air and media 
analysis were not attempted in this limited scope study, 
the full destruction, emission, and transformation fate of 
target PFAS removed from the biosolids is unknown.

FTIR and canister air sampling and analysis

Gaseous samples at various parts of the pyrolysis 
process were measured on-site using extractive FTIR 
spectroscopy at 0.5 cm−1 resolution. One 10-m (F10) 
and two 5-m (F5A and F5B) optical path length FTIRs 
(MultiGas™ Model 2030, MKS Instruments, Andover, 
MA) with liquid-nitrogen-cooled, mercury-cadmium- 
telluride detectors operating ASTM D6348-12 (ASTM 
2012) were deployed at locations in and around the 
pyrolysis process producing six 1-h tests (T) with start 
times of 10:15 (T1), 13:10 (T2), and 14:40 (T3) on 8/ 

26/20 and 9:25 (T4), 10:55 (T5), and 12:20 (T6) on 8/ 
27/20. The units operated at time resolutions of 
1 minute per data point, cell temperatures of 190°C 
and did not use water knock-out. Unit F10 produced 
data at LA for all test sets (Figure 1). Unit F5A was 
collocated with F10 at LA for T1-T3 and was moved 
to LB for T4-T6. Unit F5B sampled directly after the 
wet scrubber at LC for T3 and T6 and looked-for gas 
emission leakage from the pyrolysis at the biochar 
outlet (LE) for T1, the biosolid inlet (LD) for T2, 
near the heat exchanger sampling port (LB) for T5, 
and sampled near the scrubbed FTIR exhaust for T4 
(not shown). The minimum detectable concentration 
#2 (MDC2) for FTIR, dynamic spiking gases, and the 
original test design that called for the controlled injec-
tion of small quantities of carbon tetrafluoride (CF4) 
and hexafluoroethane (C2F4) indicator compounds to 
assist in understanding the C-F bond destruction are 
discussed in text associated with SI Table 3.

A total of nine ~30 second duration canisters grab 
samples from the process were collected in evacuated 
1.4-liter, Silonite-coated Entech stainless steel canisters 
(Entech Instruments, Simi Valley, CA) for analysis of 
targeted volatile PFAS and volatile organic compounds 
(VOCs). Six canister samples were collected at LA and 
three samples were collected at LB. The canister samples 
were analyzed at EPA-RTP by gas chromatography- 
mass spectrometry on two analytical systems to quantify 
volatile PFAS and VOCs following US EPA 
Compendium Method TO-15. USEPA (1999b) The 
volatile PFAS analysis was performed on the Markes 
analytical system (Markes International, Sacramento, 
CA) including a Markes CIA Advantage-xr Canister 
Autosampler, a Unity-xr Thermal Desorption (TD) 
unit, a Kori-xr Water Management module, an Agilent 
7890B Gas Chromatograph (GC), and Markes 
BenchTOF Time-of-Flight Mass Spectrometer (ToF- 
MS). The targeted analysis of air toxic and ozone pre-
cursor VOCs was performed on the Entech analytical 
system that consists of an Entech 7650-M Canister 
Autosampler, Entech 7200 Preconcentrator, an Agilent 
7890B GC with 5977 Mass Spectrometer (Agilent 
Technologies, Santa Clara, CA). The instrument 
response for the targeted PFAS and VOCs were cali-
brated using certified NIST-traceable gas standards 
when available. For several targeted PFAS compounds, 
calibration standard samples were generated from neat 
chemicals. To protect from acid gases that could damage 
analysis equipment, the canisters were acquired at the 
FTIR exhaust after an impinger containing 0.1 N NaOH. 
The degree to which the 0.1 N NaOH impinger could 
have affected canister results for other compounds was 
not assessed.
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Results

PFAS in biosolids, biochar, and scrubber water

Concentrations of target PFAS compounds found in the 
dried biosolid input to the pyrolysis process, produced 
biochar, emission control scrubber water, and field 
blanks are summarized in Figure 2 and SI Table 1. 
Concentrations of target PFAS in biochar samples were 
uniformly below laboratory RLs for both TA and VA, 
except for single low-level occurrences of PFOS and 
perfluorobutanoic acid (PFBA), with the latter showing 
up in field blanks that included sampling spoon and bag 
wash. The average concentrations by laboratory for 
input biosolids were in generally good agreement (SI 
Table 2), with no significant difference between sam-
pling batches B1 and B2 noted. The average concentra-
tions of 21 detected PFAS compounds in the biosolids 
ranged from approximately 2 µg/kg to 85 µg/kg. The 
largest measured PFAS concentrations were for PFOA 
with a TA average of 86.7 µg/kg (± 8.2 µg/kg) and VA of 
84.8 µg/kg (± 14.2 µg/kg). Average PFOS concentrations 
for TA and VA were 25.1 (± 1.8 µg/kg) and 22.3 µg/kg (± 
7.4 µg/kg), respectively. The lowest PFAS concentration 
over RL was 6:2 fluorotelomer sulfonic acid (6:2 FTS) 
with TA’s value less than the MDL and VA’s average 
value at 1.5 µg/kg for two of the four samples. These 
2020 biosolid results were also in generally good agree-
ment with the 2019 single-sample analyses that were 

performed for BFT by VA in which the PFOA concen-
tration was 89.1 µg/kg and the PFOS concentration was 
26.3 µg/kg. (BFT Bioforcetech Corporation Website)

Because the produced biochar target PFAS con-
centrations were below RL, the levels were assumed 
to equal the compounds’ MDLs with the RE stated as 
“greater than” (SI Table 2). Combining all input 
biosolid data above RL, the pyrolysis system’s REs 
ranged from >81.3% to >99.9% (mean = >97.4%), 
with the lowest REs associated with the lowest 
detected PFAS concentrations and the highest 
MDLs. With 16 compounds above RL, the TA lab 
RE was >99% in all cases. The target PFAS removed 
from the biosolids could transform into non-target 
PFAS and remain in the biochar and/or move into 
the gas or liquid phases. The fate of target and non- 
target PFAS and PICs must be understood to deter-
mine the C-F bond destruction capability of any 
thermal treatment. Potential emissions and transfor-
mation effects of drying operations that may precede 
the treatment must also be considered.

Although this test provides only a partial picture, 
direct partitioning of thermally liberated target PFAS 
into the liquid phase via the emission control scrubber 
water was not readily observed with only two com-
pounds [PFOA and perfluorooctane sulfonamide 
(PFOSA)] above the liquid analysis reporting limits 
(secondary ordinate, ng/L). PFOA was found in only 

Figure 2. Concentrations of target PFAS above RL in biosolids (in µg/kg) and scrubber water effluent (in ng/L) by sampling batch and 
analysis laboratory (4 samples each) with overall average by compound.
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two of the four scrubber water samples that were ana-
lyzed by VA with an average concentration of 13.2 ng/L 
and in none of the four samples that were analyzed by 
TA. Although PFOSA was not found in the biosolid 
samples, it was found in all seven scrubber water sam-
ples using this more sensitive test. The four samples that 
were analyzed by VA with an average concentration of 
46.2 ng/L (± 34.8 ng/L) and the three analyzed by TA 
had an average concentration of 3.6 ng/L (± 1.5 ng/L). 
PFOSA was also found at a concentration of 3.4 ng/L in 
the single tap water sample that was analyzed by TA. The 
three compounds were observed at <1 ng/L in both 
scrubber water and field blanks (SI Table 1). No analyses 
of the Class B biosolid input to the BioDryer were 
performed. Additional research is required to under-
stand the origin of the measured PFOSA in the scrubber 
water.

As points of comparison, the removal of PFASs from 
WWTP biosolids was studied in an Australian semi-pilot- 
scale pyrolysis reactor with analyses for 12 PFASs in bio-
solids, biochar, and scrubber water performed (Kundu 
et al. 2020). The pyrolysis tests were carried out between 
500°C and 600°C and with a biochar yield of 36% to 45%. 
The input biosolid PFAS concentrations ranged between 
<0.5 µg/kg and 8.6 µg/kg. Biochar PFAS concentrations 
ranged between <0.2 µg/kg to <1.0 µg/kg. Scrubber water 
PFAS concentrations ranged between <10 ng/L to <100 ng/ 
L. The authors concluded that >90% removal of PFOS and 
PFOA from biosolid-derived biochar could be achieved in 
the integrated low-temperature pyrolysis/combustion pro-
cess. In contrast, a 2015 laboratory experiment on pyrolysis 
of WWTP solid in the 300°C to 600°C range showed no 
reduction PFAS in the produced biochar, (Kim et al. 2015) 
a finding at odds with the somewhat general consensus of 
at least partial thermal PFAS volatilization in this tempera-
ture regime (Winchell et al. 2021).

Gas-phase FTIR and canister measurements

Even though method development experiments to assess 
C-F bond destruction efficiency using injected CF4 and C2 

F6 indicator gases were not performed, useful information 
on emissions was provided by FTIR sampling and collec-
tion of evacuated canister grab samples. Close-coupled 
FTIR sampling at the biosolids’ inlet to the pyrolysis pro-
cess (Figure 1, LD) and at the biochar exit (LE) found no 
significant gas leakage from the pyrolysis system. Feasibility 
was demonstrated for potential future use of FTIR for 
pyrolysis process diagnostics and indicator gas testing 
after the FLOX burner (LB) and wet scrubber (LC) emis-
sion controls, in high particulate and wet conditions, 
respectively. At LA, emission levels of selected gas-phase 
compounds were measured by collocated FTIRs F10 and 

F5A for the first three of the 6-h-long test periods (T1-T3), 
and by F10 alone for the remainder of tests (T4-T6). A total 
of five evacuated canisters were acquired at the exhaust of 
F10, one canister per test for T1-T4 and T6 with one 
canister acquired at F5A during T3.

Figure 3 summarizes the mean emission rates for T1- 
T6 by compound, in kg/h and kg/t of wet biosolid mass 
processed, derived from the time-resolved FTIR data 
and extrapolated canister grab samples. Arithmetic 
means and medians of the combined data sets are also 
displayed. The red ovals indicate FTIR results below the 
detection limit and utilize MDC2/2 for calculation with 
statistical details and description on uncertainties in 
specific compounds provided in SI Tables 3–5. The 
collocated FTIRs were generally in good agreement 
except for T1 for hydrogen fluoride (HF), where 
a combination of startup and line passivation differences 
caused differences between the units. In general, the 
results for reactive gases HF and hydrogen chloride are 
considered approximate (SI Table 3). Although the FTIR 
is capable of measuring a set of volatile carbon-fluorine 
compounds (SI Table 6), only CF4 had test averages 
consistently above MDC2 for a subset of tests. The 
weak observance of CF4, C2F6, and sulfur hexafluoride 
above MDC2s by FTIR may be related to residual con-
centrations of the dynamic spiking gases utilized. These 
results were not corroborated by canister measurements 
that showed that none of the 17 analyzed fluorinated 
compounds above MDL (SI table 7). For these tests, the 
average water level was 8.34% by volume. The oxygen 
and carbon dioxide concentrations at LA were 13.66% 
and 5.13% by volume dry basis, respectively. FTIR data 
for carbon monoxide were below MDC2 in the majority 
of cases but are estimated to be 0.34 ppm dry, with this 
low value indicating generally complete combustion. 
Methane concentrations measured were below ambient 
levels. At 0.7 ppm, sulfur dioxide concentrations are also 
relatively low compared to SSI (USEPA 2020). As the 
method for canister grab sample acquisition of FTIR 
exhaust is exploratory, the emission rates for com-
pounds observed in canister analysis should be consid-
ered approximate. In addition to complete PFAS 
sampling of the emitted air stream, further research on 
optimal control strategies for gas phase and particulate 
matter emission for pyrolysis and gasification systems is 
required for wider adoption.

Summary

In August 2020, a limited-scope test of a commercial- 
scale biosolid pyrolysis operation at the SVCW WWTP 
found that target PFAS compounds present in the input 
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biosolids were removed from the produced biochar and 
were also largely absent from the emission control 
scrubber water. The test also produced FTIR and evac-
uated canister measurements of gas-phase emissions 
that further understanding of this pyrolysis process. 
This test did not inform target to non-target transforma-
tion or PFAS emissions in air, liquid, or solid media, nor 
did it produce a comprehensive assessment of air pollu-
tants generated by this thermal process.

Additional work is required to understand the pyr-
olysis treatment of PFAS-impacted biosolids. This 
work includes the development of methods for the 
measurement of air emissions of PFAS in low airflow 
process stacks and approaches for tracking PFAS 
transformation of in all phases of biosolid processing. 
Future research includes the evaluation of methods, 
such as indicator compound injection to help routi-
nely assess the destruction capability of thermal sys-
tems. The fate and transport of PFAS and other 
contaminates, such as heavy metals, in end use appli-
cations must also be understood. For wider adoption, 
optimization of process and emission controls must 
also be determined. The question remains: is addi-
tional research on pyrolysis of biosolids warranted?

The presence of PFAS and other contaminates in 
WWTP biosolids represents a significant emerging 
issue, especially for facilities without SSI and with 
potential influent point source loading. Although 

much research remains, there is growing concern 
over land application of potentially impacted biosolids. 
Alternate disposal routes, such as landfilling and 
incineration, carry their own costs and environmental 
uncertainties, which are exacerbated by a lack of PFAS 
regulatory visibility. As with any thermal system, pyr-
olysis offers mass reduction and energy recovery 
potential. The emission characteristics, regulatory 
position (compared to SSI), and scalability of pyrolysis 
and certain forms of gasification may make these 
technologies relatively attractive for consideration for 
certain categories of USWWTPs. Pyrolysis systems 
have shown operational viability for a number of feed-
stocks internationally, and in one case in the US. 
Pyrolysis systems with energy reuse design and novel 
drying approaches are more energy intensive than air 
drying biosolids but less than many thermal solutions. 
Pyrolysis produces a biochar product that may offer 
a range of significant use potential including carbon 
sequestration as a soil amendment. Taken together, 
these factors indicate that additional research on bio-
solid pyrolysis is justified.

Disclaimer

The research described in this paper was funded in part by the 
EPA ORD under contract C68HERC20D0018 to Jacobs 
Technology, with portions of the research conducted by 

Figure 3. One-hour test averages and overall means and medians for FTIR measurements and single-canister results (in kg/h) and by 
biosolid mass processed (in kg/t) at LA. Results with red ovals represent tests that were below FTIR MDC2 (SI Table 3). Four canister 
results below MDL were excluded from analysis (SI Table 4).
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